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Abstract. We propose a method to build critical embedded control systems in
a systematic way. The method covers the modelling of both the digital part and
the physical environment of a considered system, and their refinement until more
concrete levels. It is based on Event-B in order to benefit from its materials, step-
wise refinements and tools. Two main processes are distinguished: one to capture
the global model, the other to detail the global model; they are made of several
refinement steps which are accompanied with guidelines. The precise description
of the interface between the digital and physical parts is used to start the mod-
elling process. The recurrent categories of variables and events in control systems
are described and used as guidelines to conduct a systematic construction. We il-
lustrate the method with the landing gear system case study.
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1 Introduction

Modelling and analysis of complex systems without dedicated methods is painful, in-
efficient and time-consuming. Methods and tools are required for efficient system engi-
neering; this is particularly true for formal software engineering.

Unlike many other types of software, embedded systems are often developed for
specific target environments (processors, vehicles, medical devices, etc.) and very often
they should run for long times (even years), once they have been implemented in their so
called critical environments. Therefore, embedded systems and their construction have
stringent robustness requirements; one have to develop them accordingly to get them
reliable at runtime. The target environments for the development of each embedded
system do not help the advent or the expansion of tools and methods dedicated to this
type of software. But, there are numerous models for embedded real-time systems [15],

Considering that i) the requirements for reliability and correct construction of the
models and the derived embedded systems are of great importance, and that ii) the de-
velopment of these systems lacks of methods to guide the developers, we are motivated
to contribute to fill the gap between these needs and the state of the art.

In this work we propose a correct-by-construction method dedicated to critical em-
bedded control systems. This method, based on Event-B, is intended to guide step by
step the specifier or the engineer to drive its development from requirements to concrete
software, defining abstract models, and refining them in a systematic way.

In Section 2 we introduce the proposed method with the details of each step. Section
3 illustrates the application of the method on a common case study, called the landing



gear system. In Section 4 we evaluate the application of the method and the case study
and comment related studies. Section 5 concludes this work.

2 A Method to Construct Correct Embedded Systems

We present a stepwise and systematic method (named Heñcher) to construct critical
embedded control systems using Event-B. We reuse the approach already established
and demonstrated in several case studies [9,10,1], following which complex systems
can be constructed by combining 1) horizontal refinement with feature augmentation
where we have to build a global abstract model of a the whole system (a controller and
its physical environment) (Sect. 2.1) and 2) structural refinement (making the abstract
structures more and more concrete (Sect. 2.2). But we extend it and provide dedicated
guidelines at different steps, which help the developers to reach quickly a correct con-
trol system. Fig. 1 illustrates the Event-B patterns from the most abstract model which
describes only the interface of the controller, to the systematic decomposition into two
parts: the Controller and the physical Environment.

refines

Feature augmentation

machine 
  System_0
variables
  input
  state
  output
end

machine 
  System_i
variables
  input
  state
  output
  physical

events
  sense
  monitor
  stimulate
  react
end

decomposes

machine 
  Environment_j
external variables
  input
  output
variables
  physical

external events
  sense 
events
 react
end

machine 
  Controller_j
external variables
  input
  output
variables
  state

external events
  react 
events
  sense  
  monitor
  stimulate
end

machine 
  Controller_m
external variables
  input
  output
variables
  state
  k_output

external events
  react
events
  sense
  monitor
  spawn
  k_stimulate
  merge
end

structural refinem
ent

...
machine 
  System_1
variables
  input
  state
  output

refines

...
refines

events
  sense
  monitor
  stimulate
end

...

Fig. 1. Synoptic structure of the Event-B models of the construction

2.1 Horizontal Process: Building an Abstract Global Model of the System

The high level state space of any control system can be described by the elicitation of
the interface variables between the digital part (the controller) and the physical part
(the controlled environment) of the considered system.



Step 1: Characterise the abstract model of a considered system
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Fig. 2. A generic shape for event-based model of a
control system

Fig. 2 depicts a general principle
that may govern the organisation
of event-based models of control
systems. The dashed ovals are
representative of the parametric
events families; They should be
replaced by the effective events
related to the logic of a specific
case study. Besides, the identi-
fied physical devices to be con-
trolled should be precisely listed. The behaviour of each one will be specified later.

Step 1.1: Elicit the interface We distinguish in our method, a first step which consists
in the description of the interface variables of the controller. There are three categories
of variables at the interface of a controller with the controlled environment.

– the input variables: they give the sensed state of the environment (the value given
by sensors); they are read by the controller;

– the state variables: they are set and modified by the controller; they are used for
monitoring the whole system;

– the order output variables: they are those used to send the orders that stimulate the
physical environment; their values will be used by actuators.

These categories of variables will be used at different levels of the modelling and re-
finement of the system at hand: to introduce the events of the first abstract model and,
for refining gradually the first model. Additionally, we have the category of internal
variables, which are only used inside the controller.

Step 1.2: Elicit the global properties of the system The required system properties, in-
cluding safety, liveness and non-functional properties should be explicitly named and
listed in their informal form. These properties will be formalised and gradually intro-
duced with their formal form during the various construction steps of our method.

Step 1.3: Start with a first abstract model Use the interface variables resulting from
Step 1.1 to build a first Event-B abstract model. This abstract model comprises in the
related B machine clauses, the interface variables together with the appropriate abstract
sets and properties which characterise them. This Event-B model will be enriched to
obtain a global abstract model of the system including its control part, its physical part
and their related properties. Global properties of the system (among those already listed
in Step 1.2) should be formalised and introduced according to the available variables.
Notice that the enrichment incorporates gradually the details of the physical environ-
ment (sensors and actuators) and the corresponding properties.

Step 1.4: List the events of the abstract model The Event-B abstract model resulting
from the previous step will be enriched with a series of events built by defining a family
of events related to each category of the interface variables: sense events, monitor events
and stimulate events.



– Sense events family This family gathers the events used to set and to modify the values of the
input variables. For each variable of this category, define an event named after the variable,
with the prefix sense_. The link with the physical (state variables of the) environment is done
later by refining these events in Step 2.2.

– Monitor events family These events modify the appropriate state variables. For each vari-
able of this category, define an event named after the variable with the prefix monitor_, to
set the variable according to the current state of the controller and the input data.

– Stimulate events family The events of this family modify the order output variables; each
variable of this category is set with an event named after the variable with the prefix stmlt_.
These events use the internal variables, the input variables and the output variables. Associ-
ated with these events to stimulate the physical devices, we may have as many events to stop
the stimulation of the devices; accordingly these events have their name prefixed with stop_.

These three families of events, together with the reaction events family introduced
later, are compliant with the standard sense-decision-control of the control cycle.

Step 2: Extend the abstract global model

Use feature augmentation [9,10,1] to integrate the controlled environment. This is pre-
cisely achieved on the basis of the sense events family, which in turn need the descrip-
tion of the controlled environment. The global properties listed before are also gradually
formalised in the model, as invariants, as soon as the appropriate variables are available.
Two sub-steps are distinguished but no matter their order during the development.
Step 2.1: Introduce the physical environment and the reaction events family It con-
sists in adding successively to the model, events to propagate the values of interface
output variables inside the physical environment. These events simulate or stop the
behaviours of physical devices via the actuators. The feature augmentation is used to
introduce the physical state variables, invariants and appropriate behaviours. Depend-
ing on the cases, either one simulates the behaviour of the physical devices with an
abstract model, or the values of the output variables (from the interface) result in sig-
nals sent to the environment. In this last case we do not have dedicated events in the
abstract model. Accordingly, the behaviours of the physical devices should be formally
described. These behaviours, systematically guarded by the values of the output vari-
ables, may impact the state of the environment and finally they may impact the sensors.
State automata can often be used to capture the behaviour of a physical device; describ-
ing the automata with B events is then straightforward. The description of the physical
part behaviour results in the family of reaction events. These events should be named
using as prefix the identifier of the physical part that they describe.
Step 2.2: Detail the sense events family Each event of the sense family, updates an input
variable according to the state of the sensors; for this purpose the event needs the model
and the behaviour of its related sensor. Therefore the feature augmentation consists in
introducing the model of the sensors and their related behaviour, as variables, invariants
and related events. The behaviour of the sensors should consider the possible failures
(anomalies, malfunctioning or physical defects); specific events should be described for
each such possible failure.

Practically during all the refinement steps, it is recommended to proceed incremen-
tally with several small refinement steps dedicated to variables and events. This is nec-
essary to master the proof complexity.



Step 3: Introduce the specific properties

According to the system one has to build, besides the global properties gradually in-
troduced with the variables, additional specific properties should be integrated at the
abstract level to constrain the functioning of the system.

1. Reachability property with partial ordering: specific events (not at the same gran-
ularity with the Event-B events) with timestamps may be systematically used to
order and to reason on reachability properties.

2. Non functional properties: specific properties related to nonfunctional requirements
should be gradually introduced here. No matter the way they are described, pro-
vided that the mathematical support of Event-B is very large, and that external
modules may be used to analyse them.

2.2 Vertical Process: Building the Concrete Parts of the System

The aim of this second process is to build the digital part and possibly the physical part
of the system. The global Event-B abstract model resulting from the horizontal process
should then be decomposed into various parts leading to specific components. At least
we have a decomposition into a control software and a physical part. The decomposition
can be performed as soon as one want to go into the details of one of the specific part
by considering that the other part will stay as it is; that means no modification of the
other part cannot be considered when we are refining a given one. Typically, from a
decomposition step, the digital part will be refined until code by considering the events
and variables of the physical part as they was at the decomposition step.

Step 4: Refine the global abstract model

We recommend to perform structural refinements as needed by the specific model to
be refined. New internal B events may be added to refine the events of each family of
events (sense, monitor, or stimulate). The state space variables of the global abstract
model may be refined with more details in the invariant. At the end of this step, be sure
that, the events of both parts are all in place, that the global required properties of the
system are all in place (they cannot be introduced later after the decomposition).

Like with other formal models, an Event-B model can be animated, i.e. when appro-
priate values are provided for the variables in the model, its behaviour can be observed
step by step according to the semantics of the model. Animation capabilities are helpful
during all the refinement steps where we still have all the events of the global system
together; it will not be possible to animate the whole system after its decomposition.

Step 5: Decompose into software and physical parts

A decomposition paradigm is already supported by the Event-B method. It consists in
splitting a given machine into several ones which will be refined independently. The de-
composition splits the variables of the state space and/or the behaviour of the machine;
however resulting machines cannot contradict each other by modifying the variables
and their related properties once they have been separated. Two approaches exist for this



purpose: the Abrial’style decomposition (called the A-style decomposition) [2] based
on shared variables, and the Butler’style decomposition (called the B-style decomposi-
tion) [7,19] based on shared events. In the A-style decomposition, events are first split
between Event-B sub-components and then shared variables of the sub-components are
used to introduce external events in the sub-components; these external events should
be refined in the same way. In the B-style decomposition, variables are first partitioned
between the sub-components and then shared events (which use the variables of both
sub-components) are split between the sub-components according to the used variables.

We adopt the A-style decomposition which is more relevant when considering a
list of specific events to be split relatively to a control part and a physical part. The
methodological guide to achieve the decomposition is as follows: the digital part is
made with all the events defined in the sense events, the monitor events and the stimulate
events families whereas the physical environment gathers all the events defined in the
reaction events families. Moreover, each part must have an abstract view of the other
through external variables and events.

Step 6: Refine the control software and the physical environment separately

Step 6.1: Refining the control software Use Structural refinements based on the stimu-
late events family to refine the controller. The involved categories of variables are the
input variables, the state variables and the output variables. Typically, the values of the
output variables are synthesised from the other ones. This can be done through simple
control functions or through sub-modules.
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Fig. 3. Modules redundancy

When there are sub-modules, the input variables
may be spawned inside the sub-modules; in the same
way output variables may be updated by promotion
from the sub-modules if any. Therefore one have to
incorporate successively in the Event-B model the
events to set and modify the output variables; they de-
scribe the result of the behaviour of the control part.
State automata help to catch these behaviours; then the
events of the B models encode the automata. We give
now some recurrent patterns to help in modelling control part.

i). Composition of several redundant sub-modules: when a controller is made of sev-
eral redundant modules, it is straightforward to describe a generic module and use
an indexing function to compose several instances of such modules (see Fig. 3).

– Encasing variables inside modules: the values coming from outside one or sev-
eral modules can be systematically encased inside the modules with a dedicated
event that spawn the events.

– Promoting variables outside a module: in a symmetric way, the values going
outside a module or several modules can be systematically described using a
promotion pattern (with a dedicated event) for merging the output variables
of the internal computing modules.

ii). When the modules are not redundant, each one should be refined separately, but the
treatment we have described for the inputs and outputs variables is the same.



Step 6.2: Refining the controlled (physical) environment Many cases can be considered
depending on the system to be studied; either the physical devices are already available,
or one has to build the physical devices from the formal models, or one has to build a
part of the physical devices. Nevertheless, the exchange of signal with actuators is the
standard way to act on physical devices.

i). In the case where the physical devices are available, with the related actuators, the
refinement is straightforward; it consists for the events of the physical part to output
the correct signal values (for example on/off values are encoded as voltage) as input
of the actuators. But the physical devices may be emulated in preliminary studies
before implementing the control part on the real devices. Mathematical models and
dedicated system engineering tools are available as explained hereafter.

ii). When the output variables of the controller cannot be immediately encoded as sig-
nal values, transformation can be achieved via appropriate mathematical functions
and models. This should be done, starting from the requirements and the proper-
ties of the previous model, for example by external modules or functions written
with tools like Matlab or Simulink1 or SciLab2; related works can be found in [21].
These tools generate executable codes dedicated to the target devices. They are also
equipped with specific functions to handle time requirements.

3 A Running Case Study

The proposed method is applied on the Landing Gear (LG) case study, a benchmarking
example proposed at the ABZ’2014 conference to compare different formal methods
in terms of expressivity, performance, and ease of use. A prerequisite for reading this
section is the detailed specification of this critical embedded system given in [5]. A
summary of the LG system is depicted in Fig. 4.
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Fig. 4. Global architecture of the LG system

The LG system is in charge
of manoeuvring 3 landing boxes:
front, left and right. Each landing
box contains a landing gear, an as-
sociated door and the correspond-
ing hydraulic cylinders in charge
to move gears and doors. The sys-
tem is made of a controller (the
digital part) and the controlled
physical environment (i.e. the 3
landing gear boxes and a pilot in-

terface) which interact via sensors and actuators; the sensors provide to the digital part
the information on the state of its physical part; the actuators engage the orders of the
controller on the physical part. The physical devices already exist, we will not build
them; the challenge deals with the digital control part only (see page 2 of [5]).

1 http://uk.mathworks.com/products/control/
2 http://www.scilab.org



3.1 Horizontal Process: Building an Abstract Global Model of the System

We give the main elements resulting from the successive application of the steps pro-
posed in the method (Sect. 2).

Step 1.1: Elicitation and modelling of the interface variables The requirement doc-
ument listed several triplicated input variables: handle, analogical switch, gear states,
doors, · · ·. We model (Step 1.3) them with a type T RIPLE = {1,2,3} used as an index
of the function variables:

GEAR = {FG,LG,RG} analogical_switch ∈ T RIPLE→ AnalSWSTAT E
DOOR = {FD,RD,LD} handle ∈ T RIPLE→ HSTAT E
HSTAT E = {hDown,hU p} gear_extended ∈ (T RIPLE×GEAR)→ BOOL
AnalSWSTAT E = {openSW,closedSW} door_closed ∈ (T RIPLE×DOOR)→ BOOL
· · · · · ·

The function variable handle ∈ T RIPLE → HSTAT E captures precisely the re-
quirement handlei ∈ {hDown,hU p} with i ∈ {1,2,3}. The state variables are the states
of the gears, doors, anomalies, etc. They are modelled as follows:

gears_locked_down ∈ BOOL ∧ gears_maneuvering ∈ BOOL ∧ anomaly ∈ BOOL ∧·· ·

The output variables hold the values computed for various electro-valves:

general_EV ∈ BOOL ∧ close_EV ∈ BOOL ∧ open_EV ∈ BOOL ∧·· ·

The lights which indicate the position of the gears and doors to the pilot are des-
cribed as internal variables: greenLight, orangeLight, redLight. These variables are
bound to the output state variable gears_locked_down with an invariant predicate. An-
other internal variable order is used to record the action of the pilot on the handle.

The LG system is controlled digitally in the normal mode until an anomaly is de-
tected. A permanent failure leads to an emergency mode where the system is controlled
analogically. Accordingly the internal boolean variable anomaly is used to denote that
an anomaly has been detected or not.

Step 1.2: Elicitation of the global properties of the LG system Most of the normal mode
requirements are safety properties. Some identified ones are the following:

R21 We can not observe a retraction sequence (consequence of the order hU p) if the handle
is down. Using the enumerated set HSTAT E which permits only one value from two
for the variable order.

R31 The gears outgoing event occurs if doors are open locked.
R41 Opening and closing doors electro-valve are not stimulated simultaneously.
R51 It is not possible to stimulate the manoeuvring EV (opening, closure, outgoing or re-

traction) without stimulating the general EV.

The first Event-B abstract model resulting from Step 1.3, gathers all the variables
of the interface, their related invariants and initialisations. Event-B contexts are used to
model the static part with the various sets and definitions that we have introduced.



Step 1.4: The families of events of the abstract model A thorough analysis of the two
action sequences (outgoing sequence and retraction sequence) described in the LG sys-
tem helps us to capture the behaviour of the digital part and to derive the events. We use
here state automata to make it clear the interaction between the different components
(actions of the pilot, the controller, the orders received by the environment).

In the sense event family we have listed for example the event sense_gear to modify
the input variable gear_extended listed above. In the same way we have listed the other
events sense_door, etc. Examples of events we have identified for the control events
family are: stmlt_general_EV to stimulate the general electro valve, stmlt_door_opening,
stmlt_gear_outgoing, stop_stmlt_general_EV, stop_ stmlt_gear_outgoing, etc.
Each one modifies its related variable, for instance the event stop_stmlt_gear_outgoing
sets the variable extend_EV to FALSE. Examples of event we have classified in the
monitor events family are: monitor_ anomaly, monitor_gears_locked_Down, monitor_
gears_maneuvering.

Step 2: Extension of the abstract global model with the event families We achieve
many refinement steps, by feature augmentation, to integrate gradually the variables
and events related to the physical devices: the sensors, the doors and the gears.

Following Step 2.1, we define the behaviours of physical devices. For instance, the
door behaviour is first captured with a state automata; the transitions of the automata
are then described as events. For this purpose we use a transition function doorState ∈
DOOR→DSTAT E where DSTAT E = {ClosedLocked,ClosedUnlocked,OpenUnloc-
ked} is the enumerated set of the identified door states. The set DOOR contains the three
door identifiers. The function doorState is a total function; this captures the requirement
that all the three doors are controlled via the state transition.

The starting transition of the door behaviour is enabled by the open_EV order
given by the digital part. Therefore there is a synchronisation between the digital part
and the motion of the doors. We only give below the description of the starting event
Door_openDoor_cl2cu; the other necessary events are similar.

event Door_openDoor_cl2cu
/* Door’s Behaviour (for the three doors). The first transition of the Door Automata */
where

@g1 open_EV = T RUE // all the doors Electro Valves are on
@g2 ran(doorState) = {notOpenLocked}

then
@a1 doorState := DOOR×{notOpenNotLocked} // door is being opened

end

The following event describes an event of the control event family.

event stmlt_gear_outgoing
/* stimulate gear outgoing electro valve once the three doors are in the open position */
where

@g0 general_EV = T RUE
@g1 order = hDown
@g2 ran(handle) = {hDown}
@g3 ran(door_closed) = {FALSE} // the three doors are in the open position



@g4 ran(door_open) = {T RUE}
@next nextOGseq = 3
@gano anomaly = FALSE // no anomaly detected
@notretract retract_EV = FALSE

then
@a1 extend_EV := T RUE
@a2 nextOGseq := nextOGseq+ sequenceStep

end

The variable nextOGseq controls the evolution of the outgoing sequence; it indicates
in the event guards, the next step in the outgoing sequence. We note that the events in
the sense event family anticipate their real future specifications, which are related to
the physical part introduced later. When we have introduced the various events families
and the related variables, it becomes clear for us that we have the complete control
loop. Following Step 2 the properties (listed in Step 1.2 above) are formalised as first
order predicates, integrated into the invariant of the abstract model and, proved along
the horizontal refinement. As an example, the requirement R51 is described as follows.
((open_EV = T RUE ∨ close_EV = T RUE ∨ extend_EV = T RUE ∨ retract_EV = T RUE)
⇒ general_EV = T RUE)

To sum up, the global Event-B abstract model results from a series of refinement of
contexts and machines.

Step 3: Dealing with specific properties In this case study, reachability is one of the
specific properties. Based on the idea of Lamport’s logical clocks [16], we implement a
technique that captures the reachability requirement R1 given in page 13 of [5]. For that
purpose, we introduce the notion of control cycle, a period of time during which one
can observe several events, especially a chain of events denoting an outgoing sequence
or a retraction sequence; a typical control cycle is one starting with an event (downH)
which denotes the hDown order and terminating by an event (dcge) which denotes the
fact that “the gears are locked down and the doors are seen closed”; similarly, another
control cycle is started when the handle triggers an order hU p. A dedicated variable
endCycle is used to control the start and the end of each control cycle.

Given a set obsEvents of events (for instance the starting of an outgoing sequence,
a door closed, a gear locked in a position, etc.) and a logical clock modelled as a natural
number, the occurrences of the events can be ordered by the timestamps given by the
clock. In our case two events cannot happen at the same time. We use a partial function
ldate ∈ obsEvents 7→N to record the timestamps of the events. We can compare and
reason on the timestamps of any events happening during a sequence and specifically
within the specific event sequence called control cycle. An example is as follows.

∀d j.(((d j ∈ N)∧ (dcge ∈ dom(ldate))∧ (d j = ldate(dcge))
∧(endCycle = T RUE)∧d j < llc)⇒

∃di.((di ∈ N)∧ (downH ∈ dom(ldate))∧ (di = ldate(downH))∧ (di < d j)∧
∀ii.(ii ∈ N∧di≤ ii∧ ii < d j⇒ ldate∼ [{ii}] 6= {upH})))

To put into practice in Event-B with Rodin, we defined the set obsEvents in the
context of our machines, and the above property is included in the invariants of the
abstract model.



3.2 Vertical Process: Building the Concrete Parts of the LG System

The vertical process includes several refinements (in Step 4) described below follow-
ing the proposed method. We end our process with the Step 5. The Step 6 was not
performed for the LG case study because only the digital part will be refined with the
objective to build the software part. The variables and events which are specific to the
behaviour of the physical part are not refined but we keep them in the model in order to
preserve animation capabilities. This approach is very pragmatic.

Step 4: Structural refinements of the global abstract model The requirement docu-
ment details the inner structure of the digital part; it is made of two redundant com-
puting modules. We achieve structural refinement steps to overcome the details of the
behaviour of the digital part.

a) Introducing the two computing modules with refinements Both modules have the
same interface (input and output variables) inherited from the abstract model of the digi-
tal part. Each interface variable of a module k (where k∈ {1,2}) is inherited from a vari-
able (for instance gear_extended) of the digital part of the abstract model and it is de-
noted by k_gear_extended(k) where k is an index. An enumerated set CompModule =
{1,2} is used for the indexes. Therefore each interface variable of the computing mod-
ules is specified with the following shape:

k_gear_extended ∈CompModule→ ((T RIPLE×GEAR)→ BOOL)
The binding between the two modules interface variables and those of the abstract mod-
ule is achieved via refinements where new variables and related events are introduced.

b) Spawning the inputs inside the computing modules with refinements We introduced
new events (prefixed with spawn_) to push the value of each input variable (for example
handle) at the abstract level, in the corresponding variable (for example k_handle) of
each computing module. As the inputs of the modules should be the same, an invariant
is defined in each case of variable spawning in order to guarantee the correctness of
the binding between the input variable of the digital part and the same input of the
computing modules. The following event pattern spawns the variables at the interfaces
of the computing modules.

event spawn_handleDown // spawn handleDown within the k CompModules
where @g1 ran(handle) = {hDown}
then

@a1 k_handle := {1 7→ (T RIPLE× (ran(handle))),2 7→ (T RIPLE× (ran(handle)))}
end

We have identified a reusable specification rule: a new event is introduced along with
each new k-indexed variable. This event should copy the variable at high level (the
digital part) into the indexed variables at the low level. Furthermore, the existing events,
whose guards or actions involve the spawned variables, should be refined by extending
their guards and actions in order to satisfy the binding between the variables and the
associated k-indexed variables. One noticeable feature in this case is that when we
have a non-deterministic event of abstract level (as for the value of the sensors), then
in the refinement the event should be refined (not extended). This is another reusable
specification rule we have identified.



c) Merging the outputs of the computing modules with refinements As depicted in Fig. 3,
the k-indexed output variables (for example k_extend_EV (1) and k_extend_EV (2)) are
merged using a logical OR to set the corresponding variable (for example extend_EV ) at
the output of the digital part. Therefore the event that sets the variable should be guarded
by the availability of the merged value. As explained before, a binding invariant should
be provided for each variable and the related k-indexed variable. Several refinements
are used to introduce the appropriate events.

d) Specifying the behaviour of the computing modules The two computing modules
have the same behaviour. It is made of the events that monitor the system and set ac-
cordingly the state output variables and the input variables of the digital part, the events
that give orders (control decision) to the physical part through the order output vari-
ables. It results in the k-indexed form of the events related to the three categories of the
interface variables and the internal variables.

We stopped our construction at this stage. However following the guidelines pro-
vided in the method, it remains to perform the decomposition step in the basis of the
sense, monitor, control events families (Step 6). Fortunately, the decomposition mod-
ules of Rodin provide assistance for this purpose. In our case the Abrial’s style of de-
compostion which is based on share variables [2] is the most appropriate. Indeed, the
decompostion is precisely based on the families of events: the sense family should be
used for a (physical) machine while monitor and control families should be used for
another (software) machine.

4 Assessment and Discussion

Coverage Applying the proposed method helped us a lot in mastering the case study.
The resulting Event-B model presented in this article covers the main aspects of the
landing system: the digital part with modules redundancy, its physical part and their
interactions. The model covers mainly the safety properties of the LG system; liveness
properties are treated by adapting Lamport’s logical clocks [16]; but we have not deal
with time constraints. Code generation was out of the scope of the current work. Never-
theless the management of huge B models is still tedious, since modifying the models
already equipped with a lot of variables an events, at more abstract level requires redo-
ing several steps of modelling, refinements and proving.

Experimentation with Rodin and statistics The Rodin tool is very efficient for proving
the Event-B models; a very high percentage (∼ 90%) of proof obligations was automat-
ically discharged. The specifications are available online3. The current version is partial
as we focus on representative events instead of being exhaustive. Statistics on Proof
Obligations are given in Tab. 1. From a total of 619 POs, 547 of them were automati-
cally discharged by Rodin and 6 of them were interactively discharged. Most of the POs
at the abstract levels were proved. The undischarged POs are related to the structural
refinement and specifically they are related to the binding invariants.

3 http://www.lina.sciences.univ-nantes.fr/aelos/softwares/LGS/index_en.php

http://www.lina.sciences.univ-nantes.fr/aelos/softwares/LGS/index_en.php


Total Auto Manual Review. Undis.
LandingSys5 619 547 6 0 66

Abstract model
Landing_DP_Ctx 0 0 0 0 0
LandingSysDP_A 115 114 1 0 0
LandingSysDP_SWITCH_A 5 3 0 0 2
LandingSysDP_DOOR_A 42 42 0 0 0
LandingSysDP_DOOR_GEAR_A 79 79 0 0 0
LandingSysDP_DOOR_GEAR_TIME_A 2 2 0 0 0

Models of the vertical refinement
LandingSysDP_DGT_R1_In 52 50 0 0 2
LandingSysDP_DGT_R2_INOUT 56 56 0 0 0
LandingSysDP_DGT_R3_INOUTDOOR 128 81 5 0 42
LandingSysDP_DGT_R3INOUTDOORGEAR 140 120 0 0 20

Table 1. Statistics of PO generated and proved with Rodin

Managing very large
models requires a rig-
orous slicing and sev-
eral small steps of re-
finements. This is the
reason why we have in-
troduced many refine-
ments, but it is still
not enough, the slicing
should be of finer grain.
Moreover a good nam-
ing discipline is neces-
sary at each level of the
modelling. As far as the ProB animation tool (integrated in Rodin) is concerned, it is
very helpful to tune the Event-B models.

Related Works The state of the art lacks of assistance methods. The four-variable
model of software-controlled embedded systems originally proposed by Parnas and
Madey has been used successfully in the development of safety-critical applications
in various industries. But as mentioned by [18], the model does not explicitly specify
the software requirements, but rather bounds them by specifying the system require-
ments and the input and output hardware interfaces of the system. We share the same
the motivations with [13]. However the authors propose a method to synthesise the
controller from the environment. They introduced the controller and its interface as a
solution to the problem of maintaining a desired behaviour of an autonomous system.
In our approach the controller is not synthesised to maintain a specific behaviour; it is
built simultaneously with the environment according to the given control requirements,
but the environment behaviour is less constrained by the controller. As far as method is
concerned in the treatment of the LG system benchmark, all the related B specifications
of the LG System are based on refinements. They do not describe a precise method-
ological process. Often, the authors need about ten refinements to include properties
and requirements. The distinction between them is rather the way the refinements are
organised rather than on methodological assumptions.
Su and Abrial [20] mentioned that there is no definitive answer for applying some recipe
since the question varies from one project to another. They propose a light methodol-
ogy with three steps: informal requirements, refinement strategy and formal model.
They excluded features like redundancy and simplified time constraints. The system-
atic refinement strategy integrates progressively the devices, which is specific to the
case study. Accordingly, our method focuses on a more general refinement strategy.
Mammar and Laleau adopted the four-variable model of software-controlled embed-
ded systems originally proposed by Parnas and Madey. They used a series of refine-
ments [17] first according to a variable classification first (monitor, control, output)
then including timing aspects, failure cases and last properties. Mammar and Laleau fo-
cused on the control part only. Since it appears to be a logical organisation, a separation
of concerns, this ordering delays most of the proof work to the last refinements. It lost
modularity and extensibility. R. Banach used Hybrid Event-B to lead his study [4]; this



extension enables one to carry continuous varying behaviours. R. Banach proposed a
proof of concept of the language extension rather than a method or a full answer to the
case study. However, hybrid-B seems adequate to refine the physical part of our current
specification and especially to model time requirements.

Hansen et al. focused on the validation of the case using ProB rather than on the
methodology of specifying with B [12]. As a matter of fact, the temporal properties
are naturally introduced using LTL expressions. Another interesting feature is the abil-
ity to visualise the system execution. The counterpart is a simplified specification (no
redundancy, no physical part, no failure). The refinements start with physical devices
(door, gears, electro-valves), then the output, sensor and controllers are introduced as
refinements and finally the general control (switch, valves, lights).

In [8] the authors present a technique for feature interactions for telecommunication
services; it is a very close approach but our method is more general than the feature
interactions. We plan to investigate more the connection of our approach with works on
system engineering approaches [14], and cyber-physical systems where interconnected
entities are interacting with the physical world [11].

5 Conclusion

We proposed a method (named Heñcher) to guide step by step the construction of em-
bedded control systems with Event-B. We build on the well-known structure of control
systems and on the experiments of several case studies where the Event-B was used and
where some methodological guidelines was provided [10,9]. We provide a systematic
use of the interface of the controller to build the components of the abstract model of
the control system and, also how the features of the control system should be used to
guide the successive refinements of the abstract model. A non trivial case study served
as illustration and assessment of the proposal.

One flaw of the Event-B top-down approach is the constraint imposed by the evolu-
tion of the global abstract model defined before its refinement to the concrete models.
This constraint prevents for an incremental model evolution. Indeed, if we miss some
features in the abstract state, we will have to reconsider completely the structural refine-
ments. It would be interesting to be able to mix both horizontal and vertical refinements
in an incremental view of the design method. In [3] Back, have proposed guidelines for
this purpose; an adaptation of this work to Event-B is likely to be interesting.

The reuse of existing independent models, with a bottom-up approach, would be
interesting for managing large Event-B models. A typical example is the composition
of existing models to build a given abstract model where each part can be modified and
refined separately.

We plan to develop an assistance tool to help the user with various patterns, in the
form of Event-B machines derived from the interface variables which will be extracted
from a sketched graphical view of its control system (as in Fig. 2).
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